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We highlight a correspondence between order-two densities and wavelet-like 
transforms of certain fractat measures. We use a variant of the ergodic theorem 
to demonstrate that these densities and transforms are well-behaved for a large 
class of quasi-self-similar fractals. We show that parallel ideas can be used to 
study the local behavior of certain fractal functions. 
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1. I N T R O D U C T I O N  

The wavelet  t ransform has been descr ibed as a "ma thema t i ca l  microscope"  
designed to s tudy  the local  behav io r  of  a funct ion or  a measure  by  
in tegra t ing  agains t  t rans la tes  and  di lates  of  a given funct ion called a 
wavelet. (1-3) Typical ly ,  a wavelet  w: Nd__+ N is large close to the origin and  

small  far away. The wavelet transform of a measure /~  is defined to be 

where s is a sui tably  chosen number .  Thus  when e is small ,  W(x,  e) reflects 

the na tu re  of p near  x. 
A number  of au thors  have s tudied wavelet  t ransforms of measures  

suppo r t ed  by  fractals, and  mul t i f racta l  measures .  (4-6) Choice  of  a sui table  w 
depends  on the purpose  for which the wavelet  t ransform is used. There  is 
cons iderab le  divergence between au thors  as to the condi t ions  tha t  w ought  
to sa t i s fy - - fo r  example ,  some require  cer ta in  mome n t s  of w to vanish,  
while o thers  specify r ap id  decrease at  infinity. 
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Here, we consider transforms by wavelets of an unconventional form, 
in that they are positive and have rather slow decay. The payoff is that in 
many cases the transforms (1.1) behave in a highly controlled manner as 
e ~ 0 .  

We study this behavior by relating wavelet transforms to the 
order-two densities introduced by Bedford and Fisher. (7) Their results on 
the existence of such densities in certain cases may then be interpreted 
in wavelet terms. We use a variation on the ergodic theorem to give a 
simplified proof  of their results, which are extended to a more general 
setting. 

In Section 5 we use similar techniques to examine the local behavior 
of certain fractal functions. Again, we may view this either in terms of 
order-two averages or in terms of wavelet-like transformations; ref. 8 for 
aspects of this latter approach. 

2. DENSITIES A N D  T R A N S F O R M S  OF MEASURES 

Let # be a finite Borel measure or "mass distribution" on R a (or, more 
generally, on a d-dimensional Riemann manifold). For  suitable s, we write 

A(x, r)= #(B(x, r) )/(2r) s (2.1) 

where B(x,r) is the closed ball of center x and radius r. Thus, 
l imr~oA(x,r)  is the density of y at x. For "reasonably smoothly" 
distributed #, this limit will exist for many x, but for more irregular mass 
distributions, it will not exist. For  example, taking s = log 2/log 3 and # as 
the natural "equidistributed" measure on the middle-third Cantor set E 
(thus, # is obtained by repeated subdivision of a unit mass, or equivalently, 
is the restriction of the s-dimensional Hausdorff  measure to E), then the 
upper limit is 2 log 2/log 3 but the lower limit is strictly less, #-almost every- 
where on E. It  is natural to ask how A(x, r) "oscillates" between its upper 
and lower limits as r tends to 0, and, in particular, what its "average" value 
is, in some sense. The Cantor  set has obvious self-similarities at scales 
1 1 1 3, 7, ~,..., so it is natural to take an average that assigns equal weight to 
each of these scaling steps, i.e., an average on a logarithmic scale. 

Thus, following Bedford and Fisher, ~7) we define the order-two 
averages of # at x as 

1 ft T A(x, e ')dt (2.2) A2(x, T ) = - ~  -o  

1 (' T 

= 2 "IJ~|,=o #(B(x, e-')) e s' dt (2.3) 
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The order-two density of # at x is defined to be l i m r ~  A2(x, T). In 
Section 4 we shall see that this limit exists for ~t-almost all x in a wide 
variety of cases, including the middle-third Cantor set measure mentioned 
above. 

The following proposition relates the order-two averages of # to a 
wavelet transform. 

P r o p o s i t i o n  2.1. Let # be a finite measure on I~ a such that 

kt(B(x, r))<~o~r s ( x6  Na, r > 0 )  (2.4) 

where ~ > 0 and s > 0. Then 

f e~ [log 5[ w dkt(y) = 2~sAz(x, T) 

as e = e -  T ~ 0, where 

w(r )=  {1, 0~<r~<l 
r s, l~<r 

+o(1 )  (2.5) 

(2.6) 

Proof. On substituting r = e  ' in (2.3), we get 

lfrl = r - S -  I#(B(x, r)) dr 2"Az(x, T) ~ -e r 

_ 1 fr' r-~- lm(r) dr 
Ilog el =~ 

where e = e -  r and m(r) = #(B(x, r)). Hence, integrating by parts, 

1 

I log~12~A~(x ,T)=s- l [m(e)e  ~ - m ( 1 ) ] + s  l lr=~r ~ dm(r) 

so, using (2.4), 

1 f d#(y) +o(1) 
2SA2(x, T) - llog e[ lx-yI >~ I x - y l  ~ 

- f e s  Ilog ~ w dk t (y )+o( l )  (2.7) 

where w is given by (2.6) and we have used (2.4) in neglecting the contribu- 
tion of {y: I x - y l  <e}  to the integral in (2.7). | 

822/67;'3-4-23 
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In particular, it follows that 

lim A2(x ,T )=2  Ss ~ l i m f  1 ( I x ~ y l )  r . . . .  0 e slloge~l w - -  d#(y) (2.8) 

if this limit exists. 
Notice that the wavelet (2.6) is "flattened" for 0 ~< r ~< 1. This is com- 

pensated for by the introduction of the logarithmic term in the wavelet 
transform 

W(x, e) = f ~ Ilog el w dl4y) (2.9) 

This approach has several advantages, in particular, that in many situa- 
tions of interest the integral (2.9) is bounded away from 0 and oe for 
small e. 

For  one example of this, let E be an s-set, that is, a (Borel) subset of 
Ad with 0 < JgS(E)<  0% where a f  s denotes the s-dimensional Hausdorff  
measure (see ref. 9 for details of Hausdorff  measures and dimension). 
Taking # to be the restriction of a f  s to E, we have that 

A(x, r)= 
~s(E,~ B(x, r)) 

(2r) '  

Such densities have been studied for many years. (1~ In particular, in the 
sense of afS-measure, 

lim A(x, r) = 0 (a.a. x q} E) 
r ~ O  

lim A(x, r) ~< 1 (a.a. x e E) 
r - + 0  

Moreover,  if s is not an integer, or if s is an integer but E is "irregular," 
then there is a positive constant a depending only on s and d such that 

l i m A ( x , r ) - l i m A ( x , r ) > ~ a  (a.a. xeE)  
r ~ 0  r - - + 0  

Thus, in general, the density l imr~o A(x, r) does not exist for x ~ E. 
On the other hand, for many sets E, including self-similar sets such 

as the middle-third Cantor  set, it may be shown that there are positive 
numbers cl,  c2 such that ci <~ A(x, r)<~ c2 for all x ~ E  and r ~  1. Thus, 
cl <~ Az(x, T) <~ c2, so, by Proposit ion 2.1, W(x, ~) is bounded away from 0 
and oo for small ~. Moreover, as we shall see, l i m ~ o  W(x, e) exists for 
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a lmost  all x. Some other  approaches  to wavelet  t ransforms of fractals use 
a wavelet  w to define a n u m b e r  so such that  (1.1) tends to ~ for S<So and 
tends to 0 for S>So,  wi thout  control l ing the t ransform at the critical 
value So. The advantage  of using (2.5)-(2.6) is that  the t ransform is often 
of interest when s - -  So. We discuss such a si tuat ion in Section 4. 

3. AN E R G O D I C  T H E O R E M  

In this section we derive a var iant  of the Birkhoff ergodic theorem 
which is suited to several of the applicat ions that  we have in mind. 

P r o p o s i t i o n  3 .1 .  Let  S be a measure-preserving t ransformat ion  on 
a finite measure  space (X,v) and let f ,  ELI(X) ( n = 0 ,  1,2,...). Let  
O, eLI(X)  ( n = 0 ,  1, 2,...) and suppose that  O,(x)~O for v-almost  all x. 
Suppose  that,  for all sufficiently large n, 

If,(Skx) - f,+k(x)L <~ O,(x) (3.1) 

for all x ~ X and k ~ • +. Then  ( l /n)  , -  1 Zk  = o f~(x) converges pointwise a.e. to 
a function f e L l ( X ) .  Moreover ,  if S is ergodic, then f is a.e. constant.  

Proof. For  large enough n and m ~> 1, we have identically that  

1 m + . - ~  1 "-~  
fk (x)  = ~ fk(x) (3.2) 

mWn k=O m+nk=o 
1 m 1 

+ -  ~ [f ,+k(x)-- f~(Skx)] (3.3) 
m-Fit k=O 

m 1 m-1 
+ ~ f ,(Skx) (3.4) 

m + n m  k=o 

Lett ing m ~ oo for fixed it, (3.2) converges to 0 a.e., (3.3) is bounded  in 
modulus  by O,(x) for each x, and (3.4) converges a.e. to a function 
f *  ~ La(X), by the Birkhoff  ergodic theorem. (~3) Hence  

f * ( x ) -  O,(x) <~ lim - -  fk(x) 
m ~ o o m  k =  0 

~< li---m 1 ~  1 -- fk(x) <~ f* (x )  + O,(x) 
m ~ m  k =  0 

for a . a .x .  Let t ing n ~ o% it follows that  

lim 1 ~ l  - -  f k ( x ) =  lira f * ( x ) = f ( x )  
, ~  m k=o n ~  
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say, for a.a. x, where 

I f ( x ) - f * ( x ) l  <On(X) a.e., 

so f e  L I ( x )  
If S is ergodic, then f *  is constant a.e. for each n, so f is constant 

a.e. l 

4. M I X I N G  REPELLERS 

The aim of this section is to demonstrate the existence of the 
order-two densities, equivalently the limit of (2.9), as e --* 0, of a class of 
mixing repellers that includes many hyperbolic Julia sets. (We take/~ to be 
the appropriate dimensional Hausdorff measure on the sets.) 

Proposition 4.1 was obtained in the special case of a one-dimensional 
two-part cookie-cutter by Bedford and Fisher. (7~ Our proof avoids some of 
the technicalities of theirs by estimating integrals of A(x, r) rather than 
A(x, r) directly. 

Many standard properties of mixing repellers may be deduced from 
the existence of Markov partitions, using symbolic dynamics. (14'15~ Our 
approach has the advantage that we can take such properties as our 
starting point, rather than having to work from the Markov partitions 
themselves. 

Let M be a d-dimensional Riemann manifold and S a conformal map 
of class C 1+" on M, i.e., with the tangent map of S satisfying a H61der 
condition of exponent t /> 0. Let J be a mixing repeller for S, i.e., J is a 
subset of M satisfying the following conditions. 

(i) S is expanding, i.e., there exist e > 0 and e > 1 such that 

IDS"(x)I >1 ca" (4.1) 

for all x E J and n/> 1, where DSn(x) is the tangent map of S" at x. [-Since 
S is conformal, DS"(x) is a similarity transformation, with [DSn(x)[ the 
similarity ratio.] 

(ii) There is an open neighbourhood V of J such that 

J= { x ~ V: S"x E Vfor  all n~>0} 

(iii) S is topologically mixing on J, i.e., if U is an open set that 
intersects J, then J~_f"(U) for some n > 0. 

These conditions imply that J is invariant under S, i.e., S - I ( J ) =  
S(J) = J. The best-known examples of mixing repellers are hyperbolic Julia 
sets of suitable meromorphic mappings S on C. 
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A fundamental property of such a mixing repeller J is that 
0 < YVs(J)< o% where s is the Hausdorff dimension of J and ofs is the 
s-dimensional Hausdorff measure; see refs. 14 and 16 for different proofs of 
this. 

Our aim is to show that the order-two densities of the restriction of 
of" to J exist and are constant ~ - a l m o s t  everywhere on J. 

We list some facts about mixing repellers that are by now regarded as 
standard. These may be gleaned from various of refs. 7 and 14-18. 

l. There exists r o>0 ,  c'>O, and cq> 1 such that for all x e J, 
O<r<~ro, and n~2_ + we have 

s-"(B(x, r)) _~ V 

and 

S~: S-"(B(S"x, r)) Ix--* B(S'x, r) (4.2) 

is a C I+" bijection satisfying 

IDS"(y)[ >~ c'c~'~ (4.3) 

on S-"(B(S"x, r))Ix, the connected component of S-"(B(S"x, r)) con- 
taining x. 

2. The following form of the "bounded distortion property" holds. 
There exist r0 > 0 and a > 0 such that 

Ilog I o g k ( y l ) { -  log (ogk(y2)({<~ a (Sky~- Skyz[" (4.4) 

for all Yl, Y2sS-k (B(S  kx, r))Ix, for all k~2~ +, x ~ J ,  and r<~r o. 
3. There exists ro > 0 such that for all n e 2 +, x ~ J, and r <~ r0 

S"B(x,r/lDS"(x+)[)c_B(g'%r)~g~B(x,r/lDS"(x_)l) (4.5) 

where x ,  x+ ~ S-"(B(S~x, r)) Ix are chosen so that 

[DS" (x  )1 = inf {DS'~(y)(, (DS'~(x+)[ = sup [DS"(y)[ (4.6) 
Y Y 

with the inf and sup taken as y varies over S-~(B(S"x, r))Ix. This follows 
by applying the mean value theorem to the restrictions of S" and S - "  to 
the domains in (4.2). 

4. We have the conformal mapping property: if ~ is a mapping that 
is a C 1 conformal bijection on ~, where U is an open domain, then 

of'(~b(E)) = Jy(eE [Dr dW'(y)  
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where ~ is the s-dimensional Hausdorf f  measure and E is an 
JY~-measurable subset of O. In  particular, we have that  if E c O, 

figS(E) inf ID(~(y)lS<~ffg~((~(E))<<.~(E)sup ID~(y)l s (4.7) 
y e U  y ~ U  

5. There are positive constants c~,  c 2 such that 

cl <~ r ~,ut~( B(x, r) ~ J) <~ c 2 (4.8) 

for all x e J and 0 < r ~< 1, where s is the Hausdorff  dimension of J. 

P r o p o s i t i o n  4.1.  Let J be a mixing repeller of a C ~+" conformal  
map S on a Riemann manifold M, as above, and let s be the Hausdorff  
dimension of J. Let v be an invariant measure on J. Then there exists c > 0 
such that  the order- two density l i m r ~  ~ A2(x, T) exists and equals c for 
v-almost all x ~ a r. 

ProoL Let r o > 0 be chosen small enough to ensure that  conditions 
1-5 above are satisfied. For  n = 0, 1, 2 .... and x e J, let 

log [DS n+ l(x)l 

f~(x) = "log IDS"(x)l e~tp(B(x, e- ' ) )  dt 

where # is the restriction of J4 ~s to J. 
Providing that  n is large enough to ensure that  [DS"(x)[ >>. ro t for all 

x e J, we have, with 

x ,  x+ ~S-k(B(Skx ,  IDS~(Skx)l ~) ) I~_S-k(B(Skx ,  c ~ ~))Ix (4.9) 

[-using (4.1)], that  

~log [DS n ~- l(Skx)[ 

f"( Skx ) = '~log i~s,(skx)l 

f 
log [DS n+ l(skx)[ 

'/log IDSn(Skx)] 

(,log ]DSn+ I(skx)[ 

Jlog [DSn(Skx)[ 

eSt#(B(Skx, e- ' ) )  dt 

eS'#( S -kB(  Skx, e-t))]~ IDSk(x + )lS dt 

eS'#(B(x, e - ' / IDSk(x_ )] )) JDS~(x + )[* dt 

using (4.7) and (4.5). Substituting u = t + log [DSk(x )[, this becomes 

[log IDS"+ ~(Skx)l + log IDs~(x-)l DS~(x + ) s 
f~(Skx) <~ eSU#(B(x, e-U)) DSk( x ) du '/log [DSn(Skx)I + log [Dsk(x-  )I 
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Noting (4.8) and (4.9) and using (4.4) both to change the range of 
integration and to estimate the integrand, we obtain 

fn( s k x  ) ~ [ ~ I~ loS'+ l(Skx)l + l~ lDSk(x)4 

[_Jlog ]DSn(Skx)] + log [DSk(x)l 

x exp[as(2c-lc~-")  "] 

Since 

e"#(B(x ,  e - " ) )  du + 2c2ac "~c~ -"~l  

log IDS~( Skx)t + log IDSk(x)t = log IDSn + k(x)l 

we get, using (4.8) again, that 

fn(S~x) ~ f ,  + k(x) + an 

where e, ~ 0 as n ~ oo. This is half of the inequality 

If.(Skx)-L+~(x)l <~e. (xeJ) 

for all sufficiently large n; the other half follows in exactly the same way. 
Thus 

1 ['i~ IOSn(x)l 1 n~l 
| e"#(B(e -t, x ) )  dt = - /._, f k (x )  -o c o 
Jo Hk=O 

pointwise v-almost everywhere, for some Co, using Proposition3.1 and 
noting that a mixing invariant measure is ergodic. By (4.8), 0 < c 1 ~< co ~< 
C2 ~ OO. 

By the simplest case from the theory of Lyapunov exponents (which 
follows from a simple application of the ergodic theorem), we have that, 
v-almost everywhere, ( i /n) log tOS"(x)l ~ 7 for some 7 > 0; hence 

1 flog IDNV'(x)l eS'#(B( e ', x))  dt -~ 
log [DS"(x)I oo 

as n--+ or. The result follows using (4.8) to pass from the discrete to the 
continuous limit. | 

Corollary 4.2. Let J be a mixing repeller of a conformal mapping 
S, as above. Then there exists c > 0  such that the order-two density 
l i m r ~  A2(x, T) exists and equals c for ~ ' - a lmos t  all x c J .  

Proof. We note that there is an ergodic invariant measure on J, 
namely the Gibbs measure, that is equivalent to jgs.~4) The corollary 
follows immediately. | 
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In view of (2.5), Proposition 4.1 implies that in this situation 
l i m ~ o  W(x, 5) exists and is constant a.e., where W is given by (2.6) and 
(2.9). 

Explicit values of order-two densities seem hard to calculate. 
Patzschke and Ziihle (~9) have obtained a value of 0.48272... in the case of 
the middle-third Cantor set. It would be of interest to know whether the 
order-two densities have an interpretation in terms of the thermodynamic 
formalism. 

5. S O M E  F R A C T A L  F U N C T I O N S  

In this section we show how the preceding analysis may be adapted to 
study the local oscillation of "fractal functions" such as 

g ( x ) =  ~ 2--amsin2mx ( X e R )  (5.1) 
m = 0  

where a (0 < a < 1) is a fixed parameter. Such functions were introduced by 
Weierstrass in his construction of a continuous but nowhere differentiable 
function. (8'9'2~ It may be shown that g satisfies a H61der condition 

Ig(x + u ) - g ( x ) t  ~ eu ~ 

and, further, that the box-counting dimension of the graph of g is 2 - a  
(see ref. 9, Example 11.3). (It is conjectured, but not yet proved, that the 
Hausdorff dimension of the graph is also 2 - a.) 

We introduce the average local moments of g. For  a fixed p >~ 1, let 

i 
r 

A ( x , r ) = r - 1  ap ] g ( x + u ) - g ( x ) l  pdu 
U = 0  

(5.2) 

The argument of ref. 9, Example 11.3, shows that there are numbers cl,  c2 
such that 

0 < c l  <,G A(x, r) ~ c2 < oo (5.3) 

for all x s R  and 0<r~< 1. However, for fixed x, the averages A(x , r )  
behave in an oscillatory manner for small r. To obtain convergence to a 
limit, we need to use order-two averages 

1 ("  T 
Az(x, T) = IJt-~|=o A(x, e - t )  dt (5.4) 
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O < cl <<. A2(x, T) <<. c2 < oo (5.5) 

We may express these order-two averages in a wavelet-like form by a very 
similar method to that employed in Proposition 2.1. We get that 

, ;  1 
A2(x, r ) -  1 + ~  e l+ap [log~] w I f ( y ) - f ( x ) i P d y + o ( 1 )  (5.6) 

where e = e -  r and 

f 
0, x~<0 

w(x)= 1, 0 < x ~ < l  

X (l+ap) 1 ~<x 

(5.7) 

From (5.1) 

Proof. Define S: [0, 2~) ~ [0, 2re) by 

S x = 2 x  (mod 2re) (5.8) 

g ( S x ) = 2 " g ( x ) - 2 a s i n x ,  x~ [0, 2re) (5.9) 

Hence, using (5.2) and substituting u' 1 

~ r / 2  

A(Sx, r)=(�89 -1-ap ]g(x + u ) - g ( x ) - s i n ( x  + u ) + s i n x t P  du 
O u = O  

Applying H61der's inequality and comparing with (5.2) gives 

IA( Sx, r) - A(x, �89 ~< cr p(I ot (5.10) 

where c is indepenent of x and r. 
Let 

ft ~+1 f~(x) = A(x, 2 t) dt 
= n  

By virtue of (5.5), this is, in a sense, the "correct" wavelet function to use. 

P r o p o s i t i o n  5.1. Let g be given by (5.1) and let p ~> 1. Then there 
exists Co>0 such that l i m r ~ o  A2(x, T) exists and equals Co for a.a. x e  R 
(in the sense of Lebesgue measure), where A2(x, T) is the order-two 
average moment defined by (5.2) and (5.4). 
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Then 

~n + 1 dt n+IA(Sx ,  2 ' ) d t -  A(x, 1 t = ~2 ) IL(Sx)-fn+l(X)l , - t = n  O ~ = n  

~< c2 nP(~--a) 

by (5.10). Iterating, we obtain 

[ f~(Skx) - fn+k(x ) f  <~ c'2 ,p(1- a) 

where c' is independent of n, k, and x. Since S is measure-preserving and 
ergodic with respect to the Lebesgue measure on [0, 2re), Proposition 3.1 
gives that 

= -  f ~ ( x )  ~ Co 
=0 iv/ k=0  

pointwise a.e. for some number Co. Using (5.3), we can pass to the con- 
tinuous limit, and a change of variable gives the result, noting (5.5). | 

Obviously, this leads to the existence and constancy a.e. of the limit as 
E ~ 0 of the "wavelet transform" on the right-hand side of (5.6). 

Precisely the same argument may be employed replacing (5.2) by, for 
example, 

A ( x , r ) = r  1 a E g ( x + u ) - g ( x ) ] d u  
--0 

Again, lim:~_~ A2(x , T) exists and is constant a.e., but in this case the 
linearity in g(x + u ) -  g(x) ensures that this constant equals 0. 

It is also possible to study "local Fourier transforms," for example, 
with 

A(x, r ) = r  - 1 - "  [ g ( x + u ) - g ( x ) ]  e i~" du 
=0 

Apart from certain exceptional values of ,~, we again have that 
l i m T ~  A2(x, T ) = 0  for almost all x. 
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